
The Computational Complexity of Angry Birds and Similar Physics-Simulation
Games

Matthew Stephenson and Jochen Renz and Xiaoyu Ge
Research School of Computer Science

Australian National University
Canberra, Australia

matthew.stephenson@anu.edu.au, jochen.renz@anu.edu.au, xiaoyu.ge@anu.edu.au

Abstract

This paper presents several proofs for the computational com-
plexity of the popular physics-based puzzle game Angry
Birds. By using a combination of different gadgets within this
game’s environment, we can demonstrate that the problem of
solving Angry Birds levels is NP-hard. Proof of NP-hardness
is by reduction from a known NP-complete problem, in this
case 3-SAT. In addition, we are able to show that the origi-
nal version of Angry Birds is within NP and therefore also
NP-complete. These proofs can be extended to other physics-
based games with similar mechanics.

Introduction
The computational complexity of playing different video
games has been the subject of much investigation over
the past decade, with many papers demonstrating specific
video games to be either NP-hard or NP-complete. How-
ever, this has mostly been carried out on traditional style
platformers (Aloupis et al. 2014; Forišek 2010) or prim-
itive puzzle games (Kendall, Parkes, and Spoerer 2008;
Viglietta 2014). In this paper, we analyse the complexity of
playing the original version of the video game Angry Birds,
which is a sophisticated physics-based puzzle game.

The objective of each level in this game is to hit a number
of predefined targets (pigs) with a limited number of shots
(birds), often utilising or avoiding blocks and other game el-
ements to achieve this. This game differs greatly from those
previously investigated due to the fact that the player always
makes their shots from the same location (slingshot position)
and can only vary the speed and angle at which a bird trav-
els from it. This heavily reduces the amount of control that
the player has over each bird’s movement, with the game’s
physics engine being used to determine the outcome of shots
after they are made. The absence of a single highly control-
lable Avatar means that the frameworks applied to most pre-
vious game types, such as platformers, are no longer appli-
cable and new ones must be created.

In order to prove the computational complexity of solv-
ing levels for Angry Birds we will reduce from a known
NP-complete problem. For our proofs we will use reduc-
tion from the problem 3-SAT, which has previously been

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

used to show the complexity of many different video games.
These include Lemmings (Cormode 2004), Portal (De-
maine, Lockhart, and Lynch 2016), Candy Crush (Walsh
2014), Bejeweled (Gualà, Leucci, and Natale 2014) and
multiple classic Nintendo games (Aloupis et al. 2014). Al-
ternative compelxity proofs for a variety of other video
games include both older titles, such as Tetris (Demaine,
Hohenberger, and Liben-Nowell 2003), Minesweeper (Kaye
2000) and Pac-Man (Viglietta 2014), as well as more modern
games, such as Crash Bandicoot (Forišek 2010) and multiple
first-person shooters (Demaine, Lockhart, and Lynch 2016).

Complexity proofs have also been presented for many
different block pushing puzzle games, including Sokoban
(Cullberson 1998), Bloxorz (van der Zanden and Bodlaender
2015) and many varieties of PushPush (Demaine, Demaine,
and O’Rourke 2000; Demaine, Hearn, and Hoffmann 2002;
Demaine, Hoffmann, and Holzer 2004). These proofs have
been used to advance our understanding of motion planning
models, due to their real-world similarities (Demaine et al.
2001). It is therefore important that the computational com-
plexity of physics-based games is investigated further, as
playing video games such as Angry Birds has much in com-
mon with other real-world AI and robotics problems (Renz
et al. 2016).

The remainder of this paper is organised as follows: The
next section formally defines the Angry Birds game; We
then present a proof that playing Angry Birds is NP-hard by
reduction from 3-SAT; This proof is then extended to NP-
complete, by demonstrating that the original version of An-
gry Birds is also in NP; We then describe how these proofs
can be generalised to other physics-based games; Lastly, we
conclude this work and propose future possibilities.

Angry Birds Game Definition
Angry Birds is a popular physics-based puzzle game in
which the objective is to kill all the pigs within a 2D level
space using a set number of birds. An example Angry Birds
level is shown in Figure 1. Each level has a predefined size
and any game element that moves outside of its boundaries
is destroyed. The area below the level space is comprised of
solid ground that cannot be moved or changed in any way,
although other elements can be placed on or bounced off
of it. Players make their shots sequentially and in a prede-
fined order, with all birds being fired from the location of the



Figure 1: Screenshot of a level for the Angry Birds game.

slingshot. The player can alter the speed (up to a set maxi-
mum) and angle with which these birds are fired from the
slingshot but cannot alter the bird’s flight trajectory after do-
ing so, except in the case of some special bird types with
secondary effects that can be activated by the player. The
level space can also contain many other game elements, such
as blocks, static terrain, explosives, etc. All game elements
have a positive fixed mass, friction, dimensions and shape
(based on their type), and no element may overlap any other.
The level itself also has a fixed gravitational force that al-
ways acts downwards. Calculations done with regard to ob-
ject movement and resolving collisions are simulated using
a simplified physics engine based on Newtonian mechanics.

The description of an Angry Birds level can be formalised
as Level = (1Lx , 1Ly , slingshot, birds, pigs, other).

• Lx is the width of the level in pixels.

• Ly is the height of the level in pixels.

• slingshot is the pixel coordinates (x, y) from which the
player makes their shots.

• birds is a list containing the type and order of the birds
available.

• pigs is a list containing the type, angle and pixel coordi-
nates (x, y) of all the pigs.

• other is a list containing the type, angle and pixel coordi-
nates (x, y) of all other game elements.

The top left corner of a level is given the coordinate (0, 0)
and all other coordinates use this as a reference point. The
width and height of a level must be specified as integer val-
ues, and all pixel coordinates (x, y) must be defined as in-
tegers within the level space. For technical reasons Lx and
Ly are specified in Unary notation, so that the size of the
level description is polynomial to these values themselves
rather than their logarithms. There is also a finite sized list
which contains all the types of birds, pigs and other game el-
ements, as well as their properties (e.g. mass, friction, size,
etc.). This list is fixed in size and so is not relevant to the
complexity of the game.

A strategy for solving a given level description consists of
a sequence of ordered pixel coordinates (x, y) which deter-
mines the speed and angle with which each of the available
birds is fired (release points). While the speed with which a
bird can be fired is bounded, and therefore can only be de-
termined to a set level of precision, the angle of the shot can
be any rational value determined by the release point given.
Therefore, the precision with which shots can be specified,

as well as the number of bits required to define a shot and the
number of distinct shots possible, is polynomial relative to
the size of the level’s description. A tap time is also included
for activating each bird’s secondary effect if it has one. The
general decision problem we are considering in this paper
is whether, for a given Angry Birds level description, there
exists a strategy that results in all pigs being killed.

For the proofs described in this paper only the following
game elements are required:
• Red Birds: These are the most basic bird type within the

game and possess no special abilities. Once the player has
determined the speed and angle with which to fire this bird
it follows a trajectory determined by this and the grav-
ity of the level, which the player cannot subsequently af-
fect. This bird has no secondary effect so a tap time is not
needed.

• Small Pigs: These are the most basic pig type within the
game and are killed once they are hit with either a bird or
block.

• Breakable Blocks: These are blocks that are removed
from the level if they are hit either by a bird or another
block. They are represented in this paper by blocks made
of glass.

• Unbreakable Blocks; These are blocks that do not break
if they are hit but instead react in a semi-realistic physical
way, moving and rotating if forces are applied to them.
They are represented in this paper by blocks made of
stone.
Note. In Angry Birds, each block has a health value that
dictates how much damage it can take before breaking.
When a block is hit by another game element it takes
damage (reduces health) proportional to the speed and
mass of the impacting object. When the health of a block
falls below zero it is removed from the level space. To
create breakable blocks we can simply set the health of
the blocks to zero, and for unbreakable blocks we set
the health value high enough such that the player cannot
break these blocks with the birds they have (i.e. a health
greater than the combined energies of all game elements
in the level).

• Static Terrain: This is simply a set area of the level that
cannot move or be destroyed. It is represented in this pa-
per by plain, untextured, brown areas. The ground at the
bottom of the level space behaves in the same way as this.
For our proofs, we assume that the size of a level is not

bounded by the game engine and that the player’s next shot
only occurs once all game elements are stationary. This lat-
ter restriction is only a simplification to make the construc-
tion process easier to understand. We also assume that the
physics calculations performed by the game engine are not
affected as the size of the level increases (no glitches or other
simulation errors) and that there is no arbitrary fixed preci-
sion with regard to the angles that shots can have. As the
exact physics engine parameters used for Angry Birds are
not currently available for analysis, all assumptions made
about the game and its underlying properties are determined
through careful observation of the original levels.



Figure 2: General framework for NP-hardness.

Angry Birds is NP-hard
Theorem 1. The problem of solving levels for Angry Birds
is NP-hard.

For our proof of NP-hardness we will use a variation of a
general framework for platformers, similar to that used for
many past games (Aloupis et al. 2014; Demaine, Demaine,
and O’Rourke 2000; Demaine, Lockhart, and Lynch 2016),
see Figure 2. This framework can be used to prove that
a game is NP-hard by constructing the necessary gadgets.
This framework reduces from the NP-complete problem 3-
SAT, which consists of deciding whether a 3-CNF Boolean
formula can be made “true” for any combination of vari-
able values. For example, Figure 2 uses the Boolean formula
(x∨¬z∨y)∧(x∨¬x∨¬y)∧(¬y∨¬x∨z)∧(¬z∨y∨z). For
each variable in the Boolean formula there is an associated
Variable gadget and for each clause in the Boolean formula
there is an associated Clause gadget.

The player can fire a bird into any of the Variable gadgets
within the level but cannot directly fire into any other gad-
get. Each Variable gadget allows the player to set the truth
value of the associated Boolean variable, but this choice
may only be made once. Either choice then “activates” the
Clause gadgets containing the chosen literal. Crossover gad-
gets are used to deal with overlapping lines between Variable
and Clause gadgets (not needed for every game). Once all
Clause gadgets have been “activated” the level is solved. If
all Clause gadgets can be activated, then there exists a solu-
tion to the associated Boolean formula. Thus, any game can
be shown to be NP-hard if the required gadgets can be suc-
cessfully implemented within the game’s environment and
the reduction from Boolean formula to level description can
be achieved in polynomial time.

Variable Gadget
An example of a Variable gadget implementation for Angry
Birds is shown in Figure 3. This gadget allows the player to
choose the truth value of an associated Boolean variable.
Lemma 1.1. A Variable gadget can be used to indicate one
of two Binary choices, positive or negative, and can only be
used once.

Proof. The player can fire a bird into either the left entrance
(A) to indicate a positive value, or the right entrance (B)

Figure 3: Example model of the Variable gadget used.

to indicate a negative value, for the associated Boolean vari-
able. Depending on the player’s choice this causes one of the
angled glass blocks to break, resulting in the highest stone
ball falling into either the left hole if a positive literal was se-
lected, or the right hole if a negative literal was selected. The
bird itself cannot fall down any hole as the gaps between the
entrances and the holes are too small for it to pass through.
As there is only one ball at the top of the gadget the player
can only make this choice once.

Lemma 1.2. A Variable gadget can be used to activate as
many Clause gadgets as necessary.

Proof. Once the player has made their shot the ball will fall
down the selected hole and break the glass block below it.
This then causes the balls supported by the glass block to fall
either down the tunnels below them (which lead to the cor-
responding Clause gadgets for the selected literal), or onto
another glass block which supports more balls. Each glass
block is wide enough to support a maximum of two stone
balls, so if more balls are needed the second ball will break
another glass block which supports another two balls. This
process continues until as many balls fall down tunnels as
there are Clause gadgets that contain the literal chosen. Each
of these balls then travel down tunnels that lead them to spe-
cific Clause gadgets, which are then activated.

Lemma 1.3. The width and height of a Variable gadget, as
well as the number of game elements it contains, is poly-
nomial with respect to the number of Clause gadgets that
contain its associated Boolean variable.

Proof. Let VW and VH be constants representing the width
and height respectively of the smallest non-redundant Vari-
able gadget, with only one clause containing each of its lit-
eral choices (i.e. contains only four glass blocks and three
stone balls). For each additional clause that contains the
Boolean variable associated with this Variable gadget, at
most one glass block and two stone blocks are needed on
each side. Therefore, the width and height of any Variable
gadget is bounded by the polynomial expressions VW +
2C(GW − BW ) and VH + 2C(GH + BH) respectively,
where C is the number of clauses in the associated Boolean
formula, GW and GH are the width and height of the glass
rectangular block, andBW andBH are the width and height



Figure 4: Model of the
Clause gadget used.

Figure 5: Model of the
Crossover gadget used.

of the stone ball. Likewise, the number of glass and stone
blocks in any Variable gadget is bounded by the polynomial
expressions 2C + 2 and 4C + 1 respectively.

Clause Gadget
The Clause gadget implementation for Angry Birds is shown
in Figure 4. The balls from each Variable gadget fall down
tunnels (based on the player’s choice) which lead to the cor-
responding Clause gadgets that contain the chosen literal, as
defined by the associated Boolean formula.

Lemma 1.4. A Clause gadget can be used to represent a
chosen clause from any 3-CNF Boolean formula.

Proof. The three tunnels leading into the top of the Clause
gadget each come from a particular literal choice within a
Variable gadget, as determined by the 3-CNF Boolean for-
mula. Any ball that ends up in the Clause gadget will hit the
pig and “activate” the Clause gadget. A level of Angry Birds
is solved once all pigs have been killed, i.e. once all Clause
gadgets are “activated” or all clauses within the Boolean for-
mula are “true”.

Lemma 1.5. The width and height of a Clause gadget, as
well as the number of game elements it contains, is constant,
regardless of the Boolean formula being used.

Crossover Gadget
The Crossover gadget implementation for Angry Birds is
shown in Figure 5. This gadget is used whenever two tun-
nels between Variable and Clause gadgets cross. The left-
most intersecting tunnel enters at x1 and exits at x2, whilst
the rightmost tunnel enters at y1 and exits at y2.

Lemma 1.6. A Crossover gadget can be used to transport
balls from x1 to x2 without leakage to y1 or y2, or from y1
to y2 without leakage to x1 or x2.

Proof. The Crossover gadget consists of two tunnels, a ver-
tical tunnel and a tunnel at a fixed rational angle (θ). Any
ball that enters the gadget at y1 will fall straight downwards
and exit out of y2 without any risk of entering the angled tun-
nel. Any ball that enters the gadget at x1 will roll down the
slope, assuming that the angle θ is greater than or equal to
the necessary angle to overcome the rolling friction between

the ball and the ground, until it overlaps with the vertical tun-
nel. Once this happens the ball will start to fall downwards
but its momentum will continue to carry it horizontally until
it no longer overlaps the vertical tunnel, assuming that x2 is
placed low enough to ensure this. The necessary downwards
drop (D) for the angled tunnel can be easily calculated based
on the mass and friction of the ball, as well as the gravita-
tional force of the level and the angle θ.

Lemma 1.7. The width and height of a Crossover gadget, as
well as the number of game elements it contains, is constant,
regardless of the Boolean formula being used.

Level Construction
As Angry Birds is a game that relies heavily on physics sim-
ulations to resolve player actions, the positions of the gad-
gets within a level are extremely important. Elements within
the game are bound by the physics of their environment and
the only immediate control the player has is with regard to
the shots they make. For this reason, it is necessary to con-
firm that the gadgets described can be successfully arranged
throughout the level space.

Lemma 1.8. Any given 3-SAT problem can be reduced to an
Angry Birds level description in polynomial time.

Proof. We have already shown that each of the necessary
gadgets can be created using a polynomial amount of space
and elements, and can therefore also be described in poly-
nomial time. Consequently, the only remaining requirement
is that all the gadgets can be successfully arranged through-
out the level in polynomial time, relative to the size of the 3-
CNF Boolean formula. As the number of gadgets required is
clearly polynomial, it suffices to describe a polynomial time
method for determining the location of each gadget, as well
as the level’s width, height, slingshot position and number
of birds.

Although the speed at which a bird can be fired from
the slingshot is bounded (less than or equal to a maxi-
mum velocity vM ), we can still ensure that all gadgets are
reachable from the slingshot by placing them lower in the
level. As there is no air resistance, the trajectory of a fired
bird follows a simple parabolic curve for projectile motion,
y = x tan(φ) − g

2v20 cos2(φ)
x2, where v0 is the initial veloc-

ity of the fired bird, φ is the initial angle with which the bird
was fired, and g is the gravitational force of the level. This
means that in order to ensure that all Variable gadgets are
reachable they must be placed at a distance below the sling-
shot equal to or greater than −VT + g

v2
M

V 2
T , where VT is the

combined width of all Variable gadgets. We can also use the
same formula to calculate the maximum height that a bird
fired from the slingshot can reach, v

2
M

2g . Using this we can

set the position of the slingshot to (0,
−v2M
2g ) and place all

Variable gadgets the required distance below this in a hori-
zontal alignment against the left side of the level.

With the positions of the Variable gadgets defined, we
can now place the Clause gadgets relative to them. All
Clause gadgets are horizontally aligned next to each other



and placed directly to the right of the Variable gadgets. The
Clause gadgets are then moved downwards a distance equal
to or greater than T (S+D(T − 1)+W (tan(θ))), where T
is the total number of Variable gadget tunnels (equivalent to
3C), W is the combined width or all Variable gadgets and
Clause gadgets, D and θ are the same as in Lemma 1.6, and
S is the size of the Variable gadget tunnels (must be wide
enough for ball to fit down). Each Variable gadget tunnel
is associated with a specific Clause gadget tunnel that con-
tains the literal associated with it. These are allocated based
on horizontal positioning, so the leftmost Variable gadget
tunnel for a specific literal is associated the leftmost Clause
gadget that contains this literal and vice versa. Each Vari-
able gadget tunnel is then also assigned a number based on
its x-axis position, with the leftmost tunnel getting the value
one, and the rightmost tunnel getting the value T . The space
between the Variable and Clause gadgets is divided up into
T evenly sized rows, each of which should have a height of
at least S + D(T − 1) +W (tan(θ)). This row size allows
for the worst-case scenario where a tunnel intersects every
other tunnel on the way to its allocated Clause gadget. Each
row is assigned a number based on its y-axis position, with
the bottom row getting the value one, and the top row getting
the value T .

For each Variable gadget tunnel perform the following.
Firstly, drop the tunnel vertically down until it reaches the
row corresponding to its assigned number. Secondly, direct
the tunnel at an angle of θ towards its associated Clause
gadget tunnel until it is directly above it. Finally, drop the
tunnel vertically down until it reaches its associated Clause
gadget tunnel. Any intersections that occur between two tun-
nels will always be between a tunnel directed straight down,
and one at angle θ. This situation is dealt with using the
Crossover gadget previously described. There is no risk of
balls colliding within a Crossover gadget, as the tunnels as-
sociated with a specific literal never intersect. This construc-
tion process can be easily accomplished in polynomial time,
relative to the number of Clause gadgets. An example di-
agram showing how these tunnels lead from the Variable
gadgets to the Clause gadgets is shown in Figure 6, using
the same example Boolean formula as in Figure 2. This is
not a complete to scale construction, as the angled portion
of each tunnel should be contained within its own allocated
row, but has been compressed here to save space.

In addition, we need to guarantee that there are enough
release points available to allow for a bird to be fired into ei-
ther entrance for each Variable gadget. To ensure this we
will move everything constructed so far VT pixels to the
right. This means that the required width and height of the
level space needed for placing all necessary gadgets can
now be calculated. The required width of a level is equal
to (2VT + CT ), where CT is the combined width of all
Clause gadgets. The required height of a level is equal to,
−VT + g

v2
M

V 2
T +

v2M
2g + T (S +D(T − 1) +W (tan(θ))).

Lastly, the number of birds needed is equal to the number of
Variable gadgets.

As we have constructed the necessary gadgets and can po-
sition them within the game’s environment in polynomial

Figure 6: Framework construction example (not to scale).

time, the problem of solving Angry Birds levels is NP-hard.

Angry Birds is NP-complete
Theorem 2. The problem of solving levels for Angry Birds
is NP-complete.

Having shown that Angry Birds is NP-hard, the only re-
maining requirement for completeness is that it also be in
NP. The problem of solving an Angry Birds level can be de-
fined as within NP if it is possible to solve any level in poly-
nomial time using a non-deterministic Turing machine. This
requirement is equivalent to showing that any strategy for
a given level can be verified on a deterministic Turing ma-
chine in polynomial time, relative to the size of the level’s
description, and that there are a finite number of states and
strategies for any given level.
Lemma 2.1. There are a finite number of states and strate-
gies for any given Angry Birds level.

Proof. The state of a level is defined based on the current
attribute values of all the elements within it. All these val-
ues are defined as rational numbers that each take up a finite
amount of memory. Therefore, it must also be possible to de-
fine the current state of any given level in a finite amount of
memory. Thus, the total number of states for any given level
is finite. As the number of shots and release points for any
given level is polynomial, relative to the size of the level’s
description, the number of possible strategies for a level is
also finite.

Lemma 2.2. Any strategy for a given Angry Birds level can
be verified in polynomial time.

Proof. The number of elements within a level is clearly
polynomial, relative to the size of its description. The total
amount of energy that a non-static game element has at any
given time can be defined as the sum of four energy values:

• Kinetic Energy, which is determined by its velocity and
mass (mv

2

2 ).



• Gravitational Potential Energy, which is determined by its
location and mass (mgh).

• Effect Energy, which is any extra energy that can be re-
leased by the element due to its effect. This type of energy
is only possessed by specific game elements (e.g. TNT or
black birds) and is always constant depending on the ele-
ment’s type.

• Shot Potential Energy, which is the maximum amount of
energy that the slingshot can add to the element. This type
of energy is only possessed by birds that are yet to be fired
from the slingshot, and is determined by the bird’s mass
and the maximum velocity at which it can be fired (

mv2M
2 ).

The total amount of energy within a level directly after
initialisation is equal to the combined energies of all the el-
ements within it (EL). No energy is ever added to the level
after this point, only removed. Energy is removed from a
level either when one game element collides with another,
or moves out of bounds (all the element’s remaining energy
lost). There is a minimum velocity for a moving element (set
by the game engine), which means that there is also a mini-
mum non-zero amount of kinetic energy that an element can
possess, which must be equal to the minimum amount of
energy (Em) lost during a collision (assume that there is al-
ways a loss of some energy during a collision). Because of
this, the maximum number of collisions that can occur for
a given level is EL

Em
. The longest amount of time that can

pass without at least one collision occurring, or an element

moving out of bounds, is 2
√

2Ly

g (following parabolic path
from lowest point in level to highest point and back down
under the influence of gravity). Thus, the maximum theoret-
ical amount of time (T ) that any strategy can take to carry
out (ignoring time between one shot ending and the next be-
ing performed) is described by equation (1):

T =
2EL
Em

√
2Ly
g

(1)

(Em and g are fixed constants defined by the game engine
and must be greater than zero)

This means that any given strategy for an Angry Birds
level can be verified in polynomial time.

As we have shown that any given level within this game
environment has a finite number of states/strategies, and that
a strategy for solving it can always be verified in polynomial
time, we can conclude that the problem of solving Angry
Birds levels is in NP, and thus also NP-complete. This par-
ticular proof of completeness does not hold for all versions
of Angry Birds, as some newer incarnations of the game fea-
ture “bounce pads”, continuously moving platforms, or other
elements that do not possess a finite amount of energy.

Generalisation
The NP-hardness proof described in this paper can be eas-
ily replicated in many other games similar to Angry Birds,
as long as the necessary gadgets can be constructed. In
general, this means that the computational complexity of

any physics-based game can likely be established using our
framework, as long as the following requirements hold:

• A level within the game is solved by, or can only be solved
after, hitting a set number of targets.

• The game contains both static and non-static elements.
• The game contains elements that can either be destroyed

or moved as a result of the player’s actions.
• The physics engine utilised by the game allows for rudi-

mentary systems of gravity and momentum (almost all
simple physics engines should contain this) which affect
certain non-static elements.

• The only influence a player has over elements within
the gadget framework is a single binary decision made
for each Variable gadget, with regard to the movement
of a non-controllable game element (i.e. interaction with
the gadget framework is only through Variable gadget
choices).

• The game must be able to accommodate any number of
Variable/Clause gadgets, and the player should be able
to make at least as many decisions as Variable gadgets
within each level (i.e. the size of a level and the number
of decisions the player can make must be able to increase
indefinitely).

Whilst we cannot be certain that this generalisation is
applicable to all games that contain these features, using
them as loose restrictions allows us to show that many other
physics-based games are NP-hard. This includes both games
that are similar in play style to Angry Birds, such as Siege
Hero or Fragger, as well as games that play considerably dif-
ferently, such as Where’s My Water, Cut the Rope 2 or The
Incredible Machine. Proofs for these games cannot be pro-
vided here due to lack of sufficient space, but will hopefully
be presented in greater detail at some future date.

Conclusion
In this paper we have proven that the task of solving lev-
els for the original version of Angry Birds is NP-complete.
This means that this problem is at least as hard as any other
problem in NP and can be reduced to or from any other NP-
complete problem. Additional complications such as impre-
cise or noisy input data, results of actions being affected
by unknown or random values, and a huge state and ac-
tion space, make the task of solving Angry Birds levels even
more challenging. We have also shown how these proofs can
be generalised to other physics-based games with similar
mechanics.

This work greatly increases the variety of games that have
been investigated within the field of computational complex-
ity, dealing both with the introduction of physics constraints
and limitations, as well as the lack of a single highly con-
trollable Avatar. However, there is still a huge collection of
physics-based and other non-traditional puzzle games that
are available for future analysis, which do not follow the
typical structure of those previously studied. We are there-
fore hopeful that this work will inspire future research into a
more diverse range of game types and problems.



References
Aloupis, G.; Demaine, E. D.; Guo, A.; and Viglietta, G.
2014. Classic Nintendo games are (computationally) hard.
In Proceedings of the 7th International Conference on Fun
with Algorithms, 40–51.
Cormode, G. 2004. The hardness of the Lemmings game,
or oh no, more NP-completeness proofs. In Proceedings of
the 3rd International Conference on Fun with Algorithms,
65–76.
Cullberson, J. C. 1998. Sokoban is PSPACE-complete. In
Proceedings of the International Conference on Fun with
Algorithms, 65–76.
Demaine, E. D.; Demaine, M. L.; Hoffmann, M.; and
O’Rourke, J. 2001. Pushing blocks is hard. In Proceedings
of the 13th Canadian Conference on Computational Geom-
etry, 21–36.
Demaine, E. D.; Demaine, M. L.; and O’Rourke, J. 2000.
PushPush and Push-1 are NP-hard in 2D. In Proceedings of
the 12th Canadian Conference on Computational Geometry,
211–219.
Demaine, E. D.; Hearn, R. A.; and Hoffmann, M. 2002.
Push-2-F is PSPACE-complete. In Proceedings of the 14th
Canadian Conference on Computational Geometry, 31–35.
Demaine, E. D.; Hoffmann, M.; and Holzer, M. 2004.
PushPush-k is PSPACE-complete. In Proceedings of the 3rd
International Conference on FUN with Algorithms, 159–
170.
Demaine, E. D.; Hohenberger, S.; and Liben-Nowell, D.
2003. Tetris is hard, even to approximate. In Computing
and Combinatorics, 9th Annual International Conference,
351–363.
Demaine, E. D.; Lockhart, J.; and Lynch, J. 2016. The com-
putational complexity of Portal and other 3D video games.
CoRR arXiv:1611.10319.
Forišek, M. 2010. Computational complexity of two-
dimensional platform games. In Proceedings of the 5th In-
ternational Conference on Fun with Algorithms, 214–227.
Gualà, L.; Leucci, S.; and Natale, E. 2014. Bejeweled,
Candy Crush and other match-three games are (NP-)hard.
In Proceedings of the 2014 IEEE Conference on Computa-
tional Intelligence and Games, 1–8.
Kaye, R. 2000. Minesweeper is NP-complete. The Mathe-
matical Intelligence 22:9–15.
Kendall, G.; Parkes, A.; and Spoerer, K. 2008. A survey of
NP-complete puzzles. ICGA Journal 31:13–34.
Renz, J.; Ge, X.; Verma, R.; and Zhang, P. 2016. Angry
Birds as a challenge for artificial intelligence. In Proceed-
ings of the 30th AAAI Conference, 4338–4339.
van der Zanden, T. C., and Bodlaender, H. L. 2015.
PSPACE-completeness of Bloxorz and of games with 2-
buttons. In Algorithms and Complexity: 9th International
Conference, 403–415.
Viglietta, G. 2014. Gaming is a hard job, but someone has
to do it! Theory of Computing Systems 54:595621.

Walsh, T. 2014. Candy Crush is NP-hard. CoRR
arXiv:1403.1911.


